Subcellular Heterogeneity of Ryanodine Receptor Properties in Ventricular Myocytes with Low T-Tubule Density
نویسندگان
چکیده
RATIONALE In ventricular myocytes of large mammals, not all ryanodine receptor (RyR) clusters are associated with T-tubules (TTs); this fraction increases with cellular remodeling after myocardial infarction (MI). OBJECTIVE To characterize RyR functional properties in relation to TT proximity, at baseline and after MI. METHODS Myocytes were isolated from left ventricle of healthy pigs (CTRL) or from the area adjacent to a myocardial infarction (MI). Ca(2+) transients were measured under whole-cell voltage clamp during confocal linescan imaging (fluo-3) and segmented according to proximity of TTs (sites of early Ca(2+) release, F>F(50) within 20 ms) or their absence (delayed areas). Spontaneous Ca(2+) release events during diastole, Ca(2+) sparks, reflecting RyR activity and properties, were subsequently assigned to either category. RESULTS In CTRL, spark frequency was higher in proximity of TTs, but spark duration was significantly shorter. Block of Na(+)/Ca(2+) exchanger (NCX) prolonged spark duration selectively near TTs, while block of Ca(2+) influx via Ca(2+) channels did not affect sparks properties. In MI, total spark mass was increased in line with higher SR Ca(2+) content. Extremely long sparks (>47.6 ms) occurred more frequently. The fraction of near-TT sparks was reduced; frequency increased mainly in delayed sites. Increased duration was seen in near-TT sparks only; Ca(2+) removal by NCX at the membrane was significantly lower in MI. CONCLUSION TT proximity modulates RyR cluster properties resulting in intracellular heterogeneity of diastolic spark activity. Remodeling in the area adjacent to MI differentially affects these RyR subpopulations. Reduction of the number of sparks near TTs and reduced local NCX removal limit cellular Ca(2+) loss and raise SR Ca(2+) content, but may promote Ca(2+) waves.
منابع مشابه
Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure.
BACKGROUND Cardiac resynchronization therapy (CRT) is a major advance for treatment of patients with dyssynchronous heart failure (DHF). However, our understanding of DHF-associated remodeling of subcellular structure and function and their restoration after CRT remains incomplete. METHODS AND RESULTS We investigated subcellular heterogeneity of remodeling of structures and proteins associate...
متن کاملAltered distribution of ICa impairs Ca release at the t-tubules of ventricular myocytes from failing hearts
In mammalian cardiac ventricular myocytes, Ca influx and release occur predominantly at t-tubules, ensuring synchronous Ca release throughout the cell. Heart failure is associated with disrupted t-tubule structure, but its effect on t-tubule function is less clear. We therefore investigated Ca influx and release at the t-tubules of ventricular myocytes isolated from rat hearts ~18weeks after co...
متن کاملSubcellular [Ca2+]i gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes.
The central role of T-tubule and sarcoplasmic reticulum (SR) diadic junctions in excitation-contraction (EC) coupling in adult (AD) ventricular myocytes suggests that their absence in newborn (NB) cells may manifest as an altered EC coupling phenotype. We used confocal microscopy to compare fluo-3 [Ca2+]i transients in the subsarcolemmal space and cell center of field-stimulated NB and AD rabbi...
متن کاملDepletion of T-tubules and specific subcellular changes in sarcolemmal proteins in tachycardia-induced heart failure.
OBJECTIVE The T-tubule membrane network is integrally involved in excitation-contraction coupling in ventricular myocytes. Ventricular myocytes from canine hearts with tachycardia-induced dilated cardiomyopathy exhibit a decrease in accessible T-tubules to the membrane-impermeant dye, di8-ANNEPs. The present study investigated the mechanism of loss of T-tubule staining and examined for changes ...
متن کاملA-kinase Anchoring Protein 100 (AKAP100) is Localized in Multiple Subcellular Compartments in the Adult Rat Heart
Stimulation of beta-adrenergic receptors activates type I and II cyclic AMP-dependent protein kinase A, resulting in phosphorylation of various proteins in the heart. It has been proposed that PKA II compartmentalization by A-kinase-anchoring proteins (AKAPs) regulates cyclic AMP-dependent signaling in the cell. We investigated the expression and localization of AKAP100 in adult hearts. By immu...
متن کامل